Dynamical phases of short-term memory mechanisms in RNNs

Bariscan Kurtkaya^{*1,2}, Fatih Dinc^{*2,3,4}, Mert Yuksekgonul⁵, Marta Blanco-Pozo^{2,6}, Ege Cirakman², Mark Schnitzer^{2,6,7}, Yucel Yemez¹, Hidenori Tanaka^{†8,9}, Peng Yuan^{†10}, Nina Miolane^{†3}

¹Koc University, ²CNC Program, Stanford University, ³Geometric Intelligence Lab, UC Santa Barbara, ⁴Kavli Institute for Theoretical Physics, UC Santa Barbara, ⁵Computer Science, Stanford University, ⁶James H. Clark Center for Biomedical Engineering & Sciences, Stanford University, ⁷Howard Hughes Medical Institute, Stanford University, ⁸Center for Brain Science, Harvard University, ⁹Phi Lab, NTT Research, ¹⁰Institute for Translational Brain Research, Fudan University

<u>What is short-term memory?</u>

Short-term memory is a core cognitive mechanism that allows us to temporarily retain information over brief periods-such as remembering how much money we just gave a cashier or tracking a predator's path to avoid becoming prey. Most importantly, understanding this mechanism is crucial, as it may shed light on several neurological and psychiatric conditions, including Alzheimer's disease.

Why do we conduct simulations instead of wet-lab experiments?

- Wet-lab experiments are often costly, time-consuming, and difficult to scale. Simulations allow us to test hypotheses efficiently before committing to biological studies.
- Due to rapid synaptic reorganization following stimuli or rewards, identifying the underlying mechanisms of memory in vivo is highly challenging.
- Simulations also offer precise control over environmental factors—such as hunger or thirst that are difficult to regulate in animal experiments.

What tasks do we study?

otherwise

 $u_{\star} =$

To examine short-term memory mechanisms, we focused on two classical neuroscience tasks: delayed activation and delayed cue-discrimination. While the delayed activation task isolates the memory component, the cue-discrimination task combines memory with decision-making. Additionally, we explored the impact of a post-reaction period, which is rarely included in RNN training. This extension significantly altered the learned dynamics and reshaped the phase diagram.

×

ÓÒ

Simulation with RNNs

Cue 1

Cue signal Target response

Output 1

$$\hat{o}(t) = f\left(W^{\mathrm{o}}\right)$$

Geometric Intelligence Lab UC Santa Barbara

RNNs can escape from no-learning zone—yet they still exhibit similar scaling behavior.

[6] Dinc, Fatih, et al. "Latent computing by biological neural networks: A dynamical systems framework." arXiv preprint arXiv:2502.14337 (2025).