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τ ·r(t) = − r(t) + tanh(Wrecr(t) + W inu(t) + b + ϵ)

̂o(t) = f (Woutr(t) + bout)
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  In a nutshell… 
• We identified two distinct mechanisms for maintaining short-

term memory: slow-point manifolds that support smooth 
sequences, and limit cycles that generate temporally 
localized dynamics.

• We derived theoretical scaling laws linking the learning rate 
and delay length, predicting the emergence of each 
mechanism and defining critical thresholds beyond which 
learning fails.

• We demonstrate that small changes in task structure—such 
as adding a post-response period—can significantly alter 
the underlying phase space and learned dynamics.

• We propose testable predictions to guide wet-lab 
neuroscience experiments in identifying memory-related 
dynamics in the brain.
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Scaling of the
SP manifolds

Similar to our previous analytical analysis, we examine comparable scaling laws in full-rank 
RNN experiments. Notably, while analytical models cannot escape the no-learning zone, 
RNNs can escape from no-learning zone—yet they still exhibit similar scaling behavior.

Post-Reaction Analysis
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Adding a post-response period to the delayed cue-discrimination task 
significantly change the phase space—it eliminates slow-point manifolds and 
restricts the model to converge to limit cycles. However, it does not lead to a 
significant difference in the scaling of the no-solution boundary.
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To examine the vector field of firing rate dynamics, we conducted experiments 
on low-rank RNNs using delayed activation tasks. Similar to our previous 
findings, adding a post-reaction period shifts the phase space, causing 
convergence to limit cycles instead of slow-point manifolds.

Scaling Law Analysis
Ghost Model [2] for SP Manifold

Limit Cycle Model for Limit Cycles

τ ·x(t) = x2(t) + r

τ ·ρ(t) = (1 − ρ2(t))ρ(t), τ ·θ(t) = 2πr

α*GM−as =
π4Tresp

4
T−5

delay

α*LC−as =
Tresp

4
T−3

delay

Due to the pathological nature of the loss 
function, there exists a critical learning rate below 
which the model avoids a no-learning zone [2].
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What is short-term memory?
Short-term memory is a core cognitive mechanism that allows 
us to temporarily retain information over brief periods—such 
as remembering how much money we just gave a cashier or 
tracking a predator’s path to avoid becoming prey. Most 
importantly, understanding this mechanism is crucial, as it 
may shed light on several neurological and psychiatric 
conditions, including Alzheimer’s disease.

Why do we conduct simulations 
instead of wet-lab experiments?
• Wet-lab experiments are often costly, time-consuming, and difficult to scale. Simulations 

allow us to test hypotheses efficiently before committing to biological studies.
• Due to rapid synaptic reorganization following stimuli or rewards, identifying the underlying 

mechanisms of memory in vivo is highly challenging. 
• Simulations also offer precise control over environmental factors—such as hunger or thirst—

that are difficult to regulate in animal experiments.

What tasks do we study?
To examine short-term memory mechanisms, we focused on two classical neuroscience tasks: 
delayed activation and delayed cue-discrimination. While the delayed activation task isolates the 
memory component, the cue-discrimination task combines memory with decision-making. 
Additionally, we explored the impact of a post-reaction period, which is rarely included in RNN 
training. This extension significantly altered the learned dynamics and reshaped the phase diagram.
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τ = 20msτ = 10ms

To examine the effect of the leak coefficient ( ) in our experiments, we increased 
its value from 10 milliseconds to 20 milliseconds. As we increased the delay 
length proportionally with   , the phase diagram remained unchanged.
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To verify the importance of the delay component, we removed the delay period 
from the task and adjusted the response period accordingly. As a result, the 
scaling law disappeared—highlighting the critical role of the delay in shaping the 
learned dynamics.
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